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Abstract. In the taiga-tundra ecotone (TTE), site-dependent forest structure characteristics can influence the subtle and 

heterogeneous structural changes that occur across the broad circumpolar extent.  Such changes may be related to ecotone 

form, described by the horizontal and vertical patterns of forest structure (e.g., tree cover, density and height) within TTE 10 

forest patches, driven by local site conditions, and linked to ecotone dynamics.  The unique circumstance of subtle, variable 

and widespread vegetation change warrants the application of spaceborne data including high-resolution (< 5m) spaceborne 

imagery (HRSI) across broad scales for examining TTE form and predicting dynamics.  This study analyzes forest structure 

at the patch-scale in the TTE to provide a means to examine both vertical and horizontal components of ecotone form.  We 

demonstrate the potential of spaceborne data for integrating forest height and density to assess TTE form at the scale of forest 15 

patches across the circumpolar biome by (1) mapping forest patches in study sites along the TTE in northern Siberia with a 

multi-resolution suite of spaceborne data, and (2) examining the uncertainty of forest patch height from this suite of data across 

sites of primarily diffuse TTE forms.  Results demonstrate the opportunities for improving patch-scale spaceborne estimates 

of forest height, the vertical component of TTE form, with HRSI.   The distribution of relative maximum height uncertainty 

based on prediction intervals is centered at ~40%, constraining the use of height for discerning differences in forest patches.  20 

We discuss this uncertainty in light of a conceptual model of general ecotone forms, and highlight how the uncertainty of 

spaceborne estimates of height can contribute to the uncertainty in identifying TTE forms.  A focus on reducing the uncertainty 

of height estimates in forest patches may improve depiction of TTE form, which may help explain variable forest responses in 

the TTE to climate change and the vulnerability of portions of the TTE to forest structure change. 

1 Introduction 25 

1.1 TTE vegetation structure and processes 

The circumpolar biome boundary between the boreal forest and arctic tundra, also known as the tree-line, the forest-

tundra ecotone, or the taiga-tundra ecotone (TTE), is an ecological transition zone covering > 1.9 million km2 across North 

America and Eurasia (Payette et al, 2001; Ranson et al., 2011).  This ecotone is among the fastest warming on the planet 
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(Bader, 2014).  The location, extent, structure and pattern of vegetation in the TTE influences interactions between the 

biosphere and the atmosphere through changes to the surface energy balance and distribution of carbon (Bonan, 2008; 

Callaghan et al., 2002a).   These TTE vegetation characteristics also affect local and regional arctic and sub-arctic biodiversity 

(Hofgaard et al., 2012) and are controlled by a variety of factors that are scale-dependent (Holtmeier and Broll, 2005).  At 

local scales the spatial configuration of trees is determined largely by site-level heterogeneity in hydrology, permafrost, 5 

disturbance, topography (aspect, slope, elevation), land use and the geomorphologic conditions associated with each (Dalen 

and Hofgaard, 2005; Danby and Hik, 2007; Frost et al., 2014; Haugo et al., 2011; Holtmeier and Broll, 2010; Lloyd et al., 

2003). 

North of the Kheta River in central Siberia (e.g., 71.9°N 101.1°E), the TTE exhibits a change in forest structure across 

a gradient of open canopy (discontinuous) forest from south to north.   In this region, latitude coarsely controls TTE forest 10 

structure characteristics, which feature a general decrease in height and cover from south to north, as well as a variety of spatial 

patterns of trees (Holtmeier and Broll, 2010).  These structural characteristics influence a range of TTE biogeophysical and 

biogeochemical processes in a number of ways.  Forest structure provides clues as to the extent of sites with high organic 

matter accumulation and below-ground carbon pools (Thompson et al., 2016).  Recent work notes that rapid growth changes 

individual tree forms, thus altering recruitment dynamics (Dufour-Tremblay et al., 2012).  Height and canopy cover of trees 15 

and shrubs affect site-level radiative cooling, whereby larger canopies increase nocturnal warming and influence regeneration 

(D'Odorico et al., 2012).  Such tree height and canopy controls over the transmission of solar energy have been well 

documented (Davis et al., 1997; Hardy et al., 1998; Ni et al., 1997; Zhang, 2004). The height and configuration of vegetation 

also partly influences permafrost by controlling snow supply, creating heterogenuous ground and permafrost temperatures 

(Roy-Léveillée et al., 2014).  Accounting for vegetation heterogeneity in schemes addressing surface radiation dynamics helps 20 

address the effects on rates of snowmelt in the boreal forest (Ni-Meister and Gao, 2011).  Modeling results support the 

importance of tree heights on boreal forest albedo, which is a function of canopy structure, the snow regime, and the angular 

distribution of irradiance (Ni and Woodcock, 2000).  Better representation of vegetation height and cover are needed to 

improve climate prediction and understand vegetation controls on the snow-albedo feedback in the high northern latitudes 

(Bonfils et al., 2012; Loranty et al., 2013).   Furthermore, the structure of vegetation in the TTE helps regulate biodiversity, 25 

where the arrangement of groups of trees provides critical habitat for arctic flora and fauna (Harper et al., 2011; Hofgaard et 

al., 2012).  

1.2 A conceptual model of the TTE: forest patches, ecotone form and the link to structural vulnerability 

The TTE, and other forest ecotones, can be conceptualized as self-organizing systems because of the feedbacks between 

the spatial patterns of groups of trees and associated ecological processes (Bekker, 2005; Malanson et al., 2006).  In this 30 

conceptual model groups of trees with similar vertical and horizontal structural characteristics can be represented as forest 

patches.  These patches have ecological meaning, because they reflect similar site history and environmental factors.  At a 

coarser scale, these patterns and structural characteristics of TTE forest patches have been conceptualized with a few general 
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and globally recognized ecotone forms (Harsch and Bader, 2011; Holtmeier and Broll, 2010).  In the TTE, these general 

ecotone forms (diffuse, abrupt, island, krummholz) reflect the spatial patterns of forest patches that are described by the 

horizontal and vertical structural characteristics of trees (e.g. canopy cover, height and density), and have different primary 

mechanisms controlling tree growth.   

The variation in ecotone form may help explain differing rates of TTE forest change across the circumpolar domain.  5 

These forms tend to vary with site factors, which may partly control the heterogeneity of change seen across the circumpolar 

TTE (Harsch and Bader, 2011; Lloyd et al., 2002).  Further investigation is needed into the link between observed changes in 

vegetation, their pattern, and local factors that may control these changes (Virtanen et al., 2010).  Epstein et al. 2004 provide 

a synthesis of how TTE patterns and dynamics are linked, and explain that a better understanding of vegetation transitions can 

improve predictions of vegetation sensitivity.  Their observations provide a basis for the inference that TTE structure is most 10 

susceptible to temperature-induced changes in its structure where its structure is temperature-limited.  Thus, the structural 

vulnerability of the TTE may be broadly defined as the susceptibility of its vegetation structure to changes that result in shifts 

in its geographic position and changes to its spatial pattern of trees.  Vulnerable portions of the TTE are areas most likely to 

experience changes in forest structure that alter TTE structural patterns captured by forest patches and described by ecotone 

form.  15 

1.3 Towards identifying TTE form: spaceborne data integration, scaling and the uncertainty of TTE structure 

Spaceborne remote sensing data may facilitate identifying TTE form and linking it to local site factors and structural 

vulnerability (Callaghan et al., 2010; 2002b; Harsch and Bader, 2011; Kent et al., 1997).  They way in which spaceborne data 

is integrated and scaled may be a key part of identifying structural patterns and TTE form.  Fine-scale data can resolve 

individual trees that, when grouped to patches, may reveal ecotone forms (Danby and Hik, 2007; Hansen-Bristow and Ives, 20 

1985; Hofgaard et al., 2012; 2009; Holtmeier and Broll, 2010; Mathisen et al., 2013).  Without resolving groups of individual 

trees, coarse studies of the land surface may misrepresent ecotone form, be less frequently corroborated with ground data, and 

disguise the structural heterogeneity of discontinuous forests.  In a TTE landscape this structural heterogeneity is critical for 

understanding biodiversity, biogeochemical and biophysical characteristics such as carbon sources, sinks and fluxes, 

permafrost dynamics, surface roughness, albedo, and evapotranspiration (Bonan, 2008).  Furthermore, understanding at a fine-25 

scale where the TTE is likely to change may improve understanding of the potential effects of changing TTE structure on these 

regional and global processes. 

A forest patch approach to the integration of multi-resolution remote sensing data may mitigate data scaling issues with 

regard to forest structure estimates.  One example of mitigation is the misrepresentation of forest structure that arises with the 

sole use of coarse data.   Medium-resolution sensors such as Landsat and ALOS may not be suited for identifying the patch 30 

boundaries at the resolution required to study TTE structure.  However, their spectral or backscatter information may still have 

value for predicting patch characteristics when combined with the spatial detail of high resolution spaceborne imagery (HRSI) 

to define patch boundaries.  Such an approach integrates coarser data into an analysis while maintaining the spatial fidelity of 
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feature boundaries.  Furthermore, a patch-level analysis helps attenuate high frequency noise in image data.  For example, 

ALOS PALSAR backscatter has significant pixel-level speckle (Le Toan et al., 2011; Mette et al., 2004; Shamsoddini and 

Trinder, 2012) which, when grouped with coincident HRSI patch boundaries, can be averaged to reduce the noise and 

quantified further with a variance estimate. 

In particular, data integration and scaling may also help mitigate the uncertainty of spaceborne estimates of vertical 5 

structure in discontinuous TTE forests.  A spaceborne assessment of forest structure from individual active sensors across a 

gradient of boreal forest structure shows broad ranges of uncertainty at plot-scales (Montesano et al., 2014a; 2015).  These 

plot-scales studies provide an indication of the scale at which TTE structure changes.  A spaceborne remote sensing approach 

that identifies forest patch boundaries with HRSI may provide insight into TTE structural characteristics that are indicative of 

general ecotone forms at scales that are dictated by the variation of TTE forest structure itself.  As such, a patch-based approach 10 

to capturing forest height and forest height uncertainty in the ecotone capitalizes on the added value that estimates of horizontal 

structure may provide for reducing uncertainties in estimates of vertical structure from remote sensing.   

An evaluation of forest structure uncertainty serves the long-term goal of monitoring change over time and between sites, 

as well as distinguishing the portions of the TTE that are vulnerable to changes in forest height, cover or density from those 

whose structure is more resilient, and the rates associated with these changes (Epstein et al., 2004). The spatial patterns of this 15 

structural vulnerability will help models predict the consequences of TTE structural change on regional and global processes. 

This work examines the uncertainty of mapped forest patch heights using a spaceborne remote sensing data integration 

approach.  We map forest patches with HRSI data (<5 m) to spatially assemble a medium spatial resolution (5 m - 50 m) suite 

of measurements from multi-spectral optical and SAR with light detection and ranging (LiDAR) samples to estimate and model 

forest height and its uncertainty by forest patch.  We discuss the implication of this uncertainty for both identifying TTE form 20 

and predicting dynamics, with regard to separating identifying portions of the TTE whose forest structure is vulnerable to 

temperature-induced changes. 

2 Methods 

2.1 Study area & ground reference data 

Our study area encompasses a region of the TTE in northern Siberia in which we identified forest patch mapping sites 25 

and incorporated existing calibration and validation field plot and stand data.  The region is subject to a severe continental 

climate, generally exhibits a gradient in  tree cover from discontinuous to sparse, features elevations generally < 50 m.a.s.l., 

and is underlain with continuous permafrost (Bondarev, 1997; Naurzbaev et al., 2004).  The forest cover, exclusively Larix 

gmelinii across all mapping, calibration and validation sites, exists at the climatic limit of forest vegetation, coinciding closely 

with the July 10°C isotherm (Osawa and Kajimoto, 2009).  Tall shrubs, including Alnus sp., Betula sp., and Salix sp., and 30 

dwarf shrubs (e.g. Vaccinium sp.), occur along with sedge-grass, moss and lichen ground covers. 



5 
 

The mapping sites are primarily situated on the Kheta-Khatanga Plain, north of the Kheta River, which is a tributary of 

the Khatanga River flowing north into the Laptev Sea.  One site, which sits just south of the Novaya River on the Taymyr 

Peninsula, includes a portion of Ary-Mas, the world’s northernmost forest (Bondarev, 1997; Kharuk et al., 2007; Naurzbaev 

and Vaganov, 2000).  Mapping sites were chosen based on the presence of cloud-free multispectral and stereo pair data from 

HRSI available in the Digital Globe archive, and presence of patches of forest cover (Neigh et al., 2013).  We visually 5 

interpreted HRSI to identify sites in this portion the TTE where forest cover was discontinuous and where forest patches 

exhibited diffuse, abrupt or island ecotone patch forms. 

Ground reference sites were derived from two sources.  The first consisted of individual tree measurements at circular 

plots (15 m radius) coincident with spaceborne LiDAR footprints while the second comprised stand-level data specific to Larix 

gmelinii across a broader central Siberian region.  The plot data, collected during an August 2008 expedition to the Kotuykan 10 

and Kotuy Rivers, were used as either calibration or validation data in this study (Montesano et al., 2014b).  Measurements 

were collected of tree diameters at breast height (DBH, 1.3 m) and tree heights (clinometers for 97% of trees and tape 

measurement for 3%) at plots coincident with spaceborne LiDAR footprints. The data used for this study included DBH for 

all tree stems with DBH >3 cm (±0.1 cm) and corresponding tree heights for each tree in each plot. These plot data, representing 

a range of discontinuous Larix gmelinii forest conditions found across northern Siberia excluding prostrate tree forms, were 15 

supplemented with the stand data reported in Bondarev (1997).  Shrub structure was not considered in this study. 

The forest mapping and ground reference sites do not spatially coincide.  This study examines the TTE on the Kheta-

Khatanga Plain which exhibits a range of TTE forms, where the TTE covers a broader area, and where we had access to both 

stereo and multispectral HRSI data. While not spatially coincident, our ground reference sites characterize very similar forest 

conditions to those in the mapping sites.  The main difference is that the ground reference sites feature an ecotone that is 20 

compressed, covering a smaller area due to topography, relative to the mapping sites.  The type and structure of the Larix 

gmelinii forests is consistent across the broader region (Bondarev, 1997).  The geographic footprints of all mapping sites for 

which forest patches were examined, as well as the general locations of Kotuykan/Kotuy ground reference sites, are shown in 

Figure 1.   

2.2 Spaceborne data acquisition and processing 25 

A suite of spaceborne remote sensing datasets were used in this study to delineate forest patch boundaries, assign forest 

patches with remote sensing image pixel values, and predict forest patch height.  Table 1 lists the individual data sets along 

with their period of acquisition. These data were collected within ~8 year period (2004 - 2012) across sites during which, based 

on visual inspection of HRSI, there were no signs of disturbance from fires, and for which the rate of tree growth is likely well 

below that which would be detectable from spaceborne data in that time interval.  The data include spaceborne LiDAR data 30 

from the ICESat satellite’s Geoscience Laser Altimeter System (GLAS) and image data from passive optical Landsat-7 ETM 

and Worldview-1 & -2, and synthetic aperture radar (SAR) from ALOS PALSAR. 



6 
 

2.2.1 Spaceborne LiDAR data 

The spaceborne LiDAR data from GLAS featured ground footprint samples ~60 m in diameter (the actual footprint is 

an ellipse) of binned elevation returns of features within each footprint.  These data provided ground surface elevation samples 

as described in a previous study (Montesano et al., 2014b).   The set of GLAS data coincident with the DSM of the study sites 

was filtered in an effort to remove LiDAR footprints for which within-footprint elevation changes precluded capturing heights 5 

of trees generally less than 12 m tall.  The GLAS footprints used satisfied the following conditions; (1) the set of coincident 

DSM pixels had a standard deviation ≤ 5 m, (2) the length of the LiDAR waveform was ≤20 m, and (3) the difference between 

the maximum and minimum DSM values within a 10 m radius of the GLAS LiDAR centroid was ≤ 25 m.  This radius helped 

remove footprints for which there was a broad range of DSM values near the footprint centroid, indicative of terrain slope that 

would likely interfere with forest height estimation. 10 

2.2.2 Spaceborne Image data 

Spaceborne image data covering the full extent of each study site that were resampled from their original un-projected 

format during a re-projection into the Universal Transverse Mercator coordinate system (zone 48).  The images were either 

medium (25 m-30 m pixels) or high (<5 m pixels) resolution.  The medium resolution spaceborne imagery included a Landsat-

7 ETM multispectral cloud-free composite and vegetation continuous fields tree cover (VCF) products and ALOS PALSAR 15 

tiled yearly mosaics (2007 - 2010) (Hansen et al., 2013; Shimada et al., 2014).  The four ALOS PALSAR yearly mosaics were 

processed into an average temporal mosaic of dual polarization (HH and HV) backscatter power.  The high resolution data 

consisted of HRSI multispectral (Worldview-2 satellite) and panchromatic (Worldview-1 satellite) data acquired from the 

National Geospatial Intelligence Agency via the NextView License agreement between Digital Globe and the US Government 

(Neigh et al., 2013).   20 

This HRSI was processed in accordance with Montesano et al. (2014) to generate a digital surface model (DSM) of 

elevations for each study site using the NASA Ames Stereo Pipeline software (Moratto et al. 2010; Montesano et al., 2014b).  

In addition to DSM generation, the HRSI data were processed to compute three additional image layers that were used to 

delineate and assign forest patches with the mean and variance of corresponding image pixel values.  The steps below describe 

the processing of the 3 additional layers: 25 

NDVI image: We computed a normalized difference vegetation index (NDVI) layer to create a mask separating areas 

of vegetation from non-vegetation within each mapping site.  This widely used algorithm was based on the near-infrared (NIR) 

and red channels of the multispectral HRSI ([NIR – red] / [NIR + red]).  This NDVI calculation, based on uncalibrated digital 

number values of image pixels, supported the objective of classifying forest structure patterns rather than maintaining the 

fidelity of reflectance characteristics. 30 

Panchromatic image roughness:  This roughness data was based on the textural characteristics of each site’s 

panchromatic HRSI.   Image roughness/texture information is useful for examining horizontal forest structure, a component 



7 
 

of which is tree density (e.g., Wood et al., 2012; Wood et al., 2013).  We computed image roughness using the output layers 

from the bright and dark edge detection (described in Steps 10-12 of Table 2 in Johansen et al.) (Johansen et al., 2014).  This 

image roughness derivation is resolution independent in that feature roughness can be captured as long as those features are 

resolved in the imagery.  Here, we use ~60cm data to quantify a signal from groups of Larix gmelinii trees.  The output from 

this roughness computation was a single image layer showing increased brightness values corresponding to increasingly 5 

textured surface features that is a result of the arrangement of trees across the landscape. 

Canopy roughness model:  The second of two image roughness layers, a canopy roughness model (CRM), was 

calculated from each DSM.  A low pass (averaging) filter (kernel size = 25 x 25) was applied to a version of the DSM that was 

resampled to decrease the spatial resolution by a factor of 8.  The filtering generated a smoothed terrain elevation (elevterrain) 

layer that removed the elevation spikes from the discontinuous tree cover that is evident in the DSM.  This elevterrain layer was 10 

then resampled to the original spatial resolution.  Surface feature roughness was computed as the difference between the DSM 

and elevterrain, and were represented as heights above elevterrain.   

2.3 Forest masking, patch delineation and value assignment 

We analyzed forest structure at the study sites by masking forest area, delineating forest patch boundaries and assigning 

these patches with remotely sensed data values in order to model forest patch height.  This delineation and value assignment 15 

framework used the segmentation algorithms in Definiens Developer 8.7 (Benz et al., 2004).  This framework modifies the 

multi-step, iterative segmentation and classification procedure discussed in previous work (Montesano et al., 2013).  The 

central difference is that this approach uses exclusively data from HRSI to identify a vegetation mask and refine it to create a 

forest mask.  We applied a segmentation to this forest mask to separate distinct forest patches, and then assigned those patches 

the mean and standard deviation of pixel values from all coincident data.  20 

Creating the forest mask was an iterative process that included segmentation and thresholding of the NDVI and 2 

roughness layers.  The thresholds used to classify forest were based on preliminary interpretation of the Larix gmelinii forest 

and non-forest areas in imagery across all forest patch mapping sites.  The goal of this preliminary exploratory work was to 

understand the range of roughness and NDVI values associated with forest identified with visual interpretation of the particular 

set of imagery used.  This exploratory work identified thresholds that were image independent and could be used in an 25 

automated patch classification protocol across all sites.  However, these thresholds are sensitive to the seasonality of vegetation 

and, likely, the sun-sensor-target geometry at which the imagery was acquired.  A detailed examination of the trade-offs 

associated with threshold choices and forest mask results was not part of this work. 

The preliminary vegetation mask, generated from the initial separation of vegetation and non-vegetation within 

mapping sites, was based on an unsupervised contrast-based segmentation of the NDVI layer.  This first masking step was 30 

further modified with NDVI and image roughness thresholding steps to compile a final forest mask.  Next, we used both the 

panchromatic-derived roughness layer and the DSM-derived CRM to capture vegetation roughness and modify the preliminary 

vegetation mask.  Thresholds were applied to these two roughness layers to create a forest mask sub-category.  First, forest 
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was separated from non-forest based on a panchromatic HRSI roughness threshold value = 5.5, where higher values 

represented rougher vegetation and were classified as forest.  Second, the forest mask was refined with information from the 

CRM.  A CRM threshold value = 1 was used to reclassify existing non-forest regions into the forest class.  In the final step of 

this iterative forest masking process, remaining non-forest areas with a mean roughness > 3 and mean NDVI < 0.25 were 

classified as forest. This helped classify remaining vegetation whose roughness value suggested forest vegetation, but whose 5 

NDVI value had initially excluded them from this class.    

The forest mask provided the extent for which a 2-step procedure separated distinct forest patches before assigning 

patches with image values.  First, this forest mask was divided to separate portions of forest whose roughness values were > 2 

standard deviations above the median roughness value.  Next, patches were broken apart according to surface elevation values 

provided from each site’s DSM.  Patches were assigned with the mean and standard deviation of image pixel values within the 10 

boundary of each patch.  Patch area was calculated to exclude patches below the minimum mapping unit of 0.5 hectares. The 

remaining patches coincident with LiDAR footprint samples were assigned forest patch height values via the direct height 

estimation approach discussed below.   

2.4 Predicting forest patch height directly at LiDAR footprints 

GLAS LiDAR sampling of forest canopy height provided a means to estimate average patch canopy height through 15 

direct spaceborne height measurements.  Where forest patches coincided with LiDAR footprints from GLAS, the canopy 

surface elevation from the DSMs and the ground elevation from either the DSMs or GLAS within a GLAS LiDAR footprint 

provided a sampling of forest height within the patch.  First, we applied the methodology presented in Montesano et al. (2014b) 

to compile spaceborne-derived canopy height within GLAS LiDAR footprints and convert those heights to plot-scale 

maximum canopy height with a linear model (Montesano et al., 2014b).  Finally, these plot-scale canopy height predictions 20 

from all GLAS LiDAR footprints within a given patch were used to directly determine the mean predicted forest patch height 

and the mean height error from the prediction interval of the canopy height linear model. 

2.5 Modeling forest patch height indirectly 

Canopy height predictions were made indirectly for forest patches without direct spaceborne sampling of forest canopy 

height.  This indirect method, used for the vast majority (~90%) of forest patches > 0.5 ha across the study sites, involved (1) 25 

building a model from the set of forest patches with GLAS LiDAR samples relating the predicted forest patch canopy height 

(response variable) to patch values from the spaceborne image data summarized in Table 1 (predictor variables) and (2) 

applying that model to predict forest patch canopy height for those patches with no direct spaceborne height samples.  These 

methods, described in Montesano et al. (2013) and Kellndorfer et al. (2010), use the Random Forest regression tree approach 

for prediction (Breiman, 2001; Kellndorfer et al., 2010; Montesano et al., 2013).  This approach includes specifying both the 30 

number of decision trees that are averaged to produce the Random Forest prediction and the number of randomly selected 

predictor variables used to determine each split in each regression tree.  The result is a prediction model that is valid for the 
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range of predictions on which the model was built and reduces overfitting, or, the degree to which the prediction model is 

applicable to only the specific set of input data.  

3 Results 

3.1 Forest patch delineation and direct sample density 

The forest patch was the fundamental unit of analysis in this study for which forest height was assigned either directly 5 

from spaceborne data at GLAS LiDAR footprints, or indirectly from spaceborne data by means of empirical modeling with 

Random Forest.  A representative example of a group of forest patches characteristic of a diffuse forest structure gradient 

delineated within the study area in shown in Figure 2.  Across the 9 study sites, 3931 forest patches > 0.5 ha were delineated 

based on NDVI, image roughness and DSMs all from the HRSI data.  Of this total, 364 patches (9%) coincided with at least 

one GLAS LiDAR footprint at which a height sample was computed and used in the direct estimation of patch canopy height 10 

(Figure 3a).  The bimodal distribution that features a peak in the number of forest patches ~1 ha in size is evidence of the 

heterogeneous nature of forest cover in this region.  The plots in Figure 3b group forest patches, for which direct height 

estimates were made, into categories based on patch area.  They show the general distribution of sampling density of direct 

height estimates within these patches.  All patches with direct height samples featured a sampling density of < 3 samples ha-1.  

The majority (94%) of sampled patches had sampling densities < 0.5 samples ha-1, of which most had patch areas > 10 ha.  15 

Larger patches have lower sampling densities in part because of the irregular arrangement of GLAS LiDAR tracks across the 

landscape. 

3.2 Forest height calibration and validation 

Forest height calibration and validation data were used to build and assess the empirical model for direct spaceborne 

estimates of height.  Figure 4a shows sites for which ground reference calibration and validation data were collected.  In Figure 20 

4b, the corresponding distributions of mean plot or stand height are shown for these sites.  Measurements were collected in 

plots along the Kotuykan River for this study (n = 69) and those from regionally coincident stands (n = 40) at 6 sites across 

northern Siberia from Bondarev (1997). 

A portion of the Kotuykan/Kotuy River plots were used to calibrate (n = 33) the model used to estimate spaceborne 

canopy height at plot-scales after Montesano et al. (2014b), which was applied in the direct spaceborne estimation of forest 25 

patch height (Montesano et al., 2014b).   The remaining portion of the Kotuykan/Kotuy River plots (n = 36) and stands from 

Bondarev (1997) (n = 40) served as independent validation of the distribution of forest patch heights derived from direct 

spaceborne height estimation (Bondarev, 1997).  Mean heights of forest patches, plots, and stands were used to compare 

distributions of calibration and validation data because this was the height metric that was consistently available across the set 

of forest patches, the calibration plots and the validation plots and stands.  The distributions in Figure 4c show the proportion 30 

of forest patch heights for which direct spaceborne estimates of height were made.  This distribution of direct spaceborne 
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estimates of forest patch heights is shown alongside the distributions of individual tree measurements averaged across plots or 

stands from (1) the calibration plots in Montesano et al. (2014b), (2) the remaining Kotuykan/Kotuy River validation plots, 

and (3) the validation stands from Bondarev (1997). 

3.3 Indirect forest patch height estimates 

Indirect spaceborne estimates of forest patch heights were made for the majority of patches examined.  Maximum and 5 

mean forest heights were predicted for 91% of forest patches across the study sites.  Random Forest regression tree models for 

5 sets of spaceborne data predictor variables were used to estimate maximum and mean patch height indirectly for patches 

with no coincident direct spaceborne height estimates.  Figure 5 shows the residual standard error (RSE) and R2 of the best 

performing model (based on R2) for each spaceborne data predictor set (a particular combination of spaceborne data).  The 

predictor set ‘All’ that included all spaceborne image data layers identified in Table 1 explained > 60% of overall variation in 10 

modeled patch height.  This ‘All’ model shows only incremental improvement over the model using only HRSI-derived 

predictors. The Landsat & ALOS spaceborne variables explain < 40% of variation within the modeled relationship between 

spaceborne predictors and patch height.  

3.4 Uncertainty of forest patch height estimates 

We assessed the best performing Random Forest model for indirectly estimating maximum and mean forest patch 15 

heights.  The best performing models were those from the ‘All’ predictor sets, described above, where the number of predictor 

variables was 14 and 15, for maximum and mean forest patch height, respectively.  Assessments were based on model R2 and 

RMSE for the maximum and mean patch height models, where 50% of patches with direct height estimates from which the 

indirect models were built were used for model training and 50% were used for model testing.  The results of a bootstrapping 

procedure to examine the distribution of R2 and RMSE from the Random Forest models applied to the set of testing data is 20 

shown in Figure 6a,b.  The plots show the bootstrapped distributions of best performing model R2 and RMSE, and are overlain 

with boxplots.  The Random Forest models for maximum and mean patch height explain 61% (+/- 14% at 2 σ) and 59% (+/- 

14% at 2 σ) of the variation with errors of 1.6 m (+/- 0.2 m at 2 σ) and 1.3 (+/- 0.2 m at 2 σ), respectively, where 2 σ represents 

the 95% confidence interval. 

We computed 95% prediction intervals for patches receiving both direct and indirect height estimates.  These prediction 25 

intervals show the uncertainty associated with patch-level estimates of both maximum and mean patch heights. Figure 7a 

shows these height estimates and prediction intervals for all patches in this study across the continuum of patch sizes. Figure 

7b shows the relative prediction error, which was computed as the difference between the upper and lower prediction interval 

range divided by the predicted height value. 

 30 
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4 Discussion 

Recent work suggests that TTE form may reflect which portions of the TTE have forest structure that is controlled 

primarily by temperature.  With spaceborne remote sensing, various TTE forms across broad extents can be identified by 

characterizing the horizontal and vertical structure of trees.  By identifying these forms, the controls of TTE forest structure 

may be inferred. The ability to characterize horizontal and vertical structure is a precursor to both (1) distinguishing one TTE 5 

form from another, and (2) identifying areas where TTE form suggests tree growth is temperature limited. The intersection of 

such temperature limited TTE forms with regional warming trends may point to areas where TTE forests are vulnerable to 

changes in its structure. Our work demonstrates the potential from spaceborne remote sensing for depicting a key structural 

characteristic of TTE form (height), and suggests where improvements are needed in order to identify portions of the TTE 

vulnerable to warming-induced structural changes. 10 

This study’s site-scale approach to examining forest structure is an example of a way to quantify the potential for change 

in forest structure and its effects on broader TTE dynamics.  Such detailed monitoring is needed to resolve both the variability 

in TTE forest structure at fine spatial scales and the variability in structural responses to changes in environmental drivers that 

are observed across the TTE.  The high resolution delineation of forest patches at our study sites in the TTE of northern Siberia 

demonstrates the detailed monitoring that is possible for examining spatial patterns of forest structure across the circumpolar 15 

domain, because of the use of spaceborne data.  The forest patch height prediction intervals are estimates of the measurement 

error at the forest patch scale that explain existing constraints for discerning TTE form linked to changes in TTE forest 

structure.   

We discuss the utility of the patch-based analysis, review the patch-level estimates of uncertainty and then examine 

them in the context of a conceptual biogeographic model of TTE forest structure presented in recent literature.  Such a model 20 

helps clarify and focus spaceborne approaches to examining characteristics of TTE forest structure and its vulnerability to 

structural change.  

4.1 Patch-based TTE forest structure analysis 

The patch-based approach of remotely measuring TTE forest structure addresses the imperative for site-scale detail of 

TTE vegetation, whereby individual trees can be resolved, while acknowledging the influence of clusters of trees (patches) 25 

and their density on TTE attributes and dynamics.  This approach coarsens the data, reducing spatial detail.  However, from a 

biogeographic perspective, this reduction in detail is not arbitrary as are image pixel reductions when images are coarsened by 

means of down-sampling.  Rather, image features and ancillary datasets inform the coarsening procedure, creating patch 

boundaries that are based on spectral and textural characteristics of images as well as other landscape information.  Polygonal 

patches, particularly when vegetation patterns and heterogeneity are key landscape features, may be more informative than 30 

pixels particularly for studies at fine scales.  Furthermore, patches provide a means to integrate remote sensing data across an 

area and extend sample measurements (Kellndorfer et al., 2010; Lefsky, 2010; Montesano et al., 2013; van Aardt et al., 2006; 
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Wulder and Seemann, 2003; Wulder et al., 2007).  We note that shrub structure was not accounted for in our field data, and 

not directly addressed with our patch height analysis.  However, it is likely that signals from shrubs persisted in the forest mask 

used to estimate patch structure, and thus may be incorporated into estimates of patch height and uncertainty. 

4.2 Forest patch height uncertainty 

There are four central results regarding the uncertainty of forest patch height across the study area.  The first two involve 5 

the sampling of canopy height within forest patches, while the last two focus on its modeling.  These local-scale results for the 

TTE are then contrasted with existing global-scale estimates of forest height. 

  The way in which forest patch heights are sampled affects estimates.  First, direct forest patch height estimates from 

a combination of coincident GLAS LiDAR ground surface and HRSI DSM-derived canopy elevations was made for ~9% of 

forest patches in the study area.  Second, the sampling density of these direct height estimates, driven by the sampling scheme 10 

of the spaceborne LiDAR, is < 0.5 samples ha-1 for 94% of sampled patches. This sampling density is well below the critical 

density of 16 sample ha-1 recommended for sampling forest biomass at the 1 ha plot-scale (Huang et al., 2013).  These results 

suggest that the cost of increasing forest patch sizes is a decrease in the density of direct height measurements. This is likely 

an artifact of the GLAS sampling scheme, whose sampling is regular in the along-track direction (1 sample every ~170 m), 

but whose coverage of ground tracks was highly irregular across forested areas.  Such a sampling scheme likely increases 15 

patch height uncertainty, thus limiting the ability to discern ecotone form. 

The modeling of forest patch height provided some insight into what drives the prediction of height and the associated 

uncertainty of predictions.  First, the model that explained the most variation included all remote sensing image data layers.  

However, this “all data” model showed little improvement on that built from HRSI predictors.  Furthermore, in the former, the 

most important variables were from HRSI.  These variables, NDVI and the standard deviation of the canopy surface roughness, 20 

are indications of vegetation and its density within forest patches.  This suggests that the medium-resolution data from ALOS 

and Landsat products are not strong predictors of vertical structure characteristics across the range of forest patch sizes 

identified in the study area, and that without HRSI inputs, the heterogeneity of TTE forest structure at the scale of its change 

across the ecological transition zone from forest to tundra is lost.  

Second, the errors reported for the “all inputs” models predicting maximum and mean forest patch height show forest 25 

patch height errors, including error uncertainty at < 2 m σ (95% confidence interval).  However, the prediction intervals for 

these vertical structure metrics show the uncertainty in the predictions at the patch-level of ~ 40%.  These patch-level prediction 

intervals translate to a maximum patch height error of +/- 4 m for patches with maximum heights of 10 m.  These errors 

indicate that patches with maximum heights of 5 m and 10 m would be statistically indistinguishable on the basis of height.  

This is a problem for identifying diffuse TTE forms, for which forest patch and tree height is a key attribute, because these 30 

forms generally features a gradual decrease in tree height and cover across portions of the ecotone where present.  Diffuse 

forms are the most likely type of general form to demonstrate treeline advance, where 80% of diffuse ecotone sites examined 

in a meta-analysis show such treeline advance (Harsch et al., 2009).   
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These local-scale uncertainties improve upon recent global-scale spaceborne maps of vegetation height.  These maps 

feature height uncertainties (RMSE) of ~ 6 m, which are expected given that coarse-scale (>500 m) global maps of forest 

height aggregate many of these height measurement samples across broad spatial extents (Lefsky, 2010; Simard et al., 2011).  

This uncertainty can be the difference between the presence or absence of a forest patch in the TTE and is therefore not suited 

for evaluating the link between TTE forest structure and heterogeneous local-scale site factors.   The height uncertainty of 5 

forest patches, ~90% of which have prediction intervals less than < 50% of the predicted heights, improves the uncertainty and 

spatial resolution of TTE forest height measurements.  However, this study’s primary benefit is in the fidelity of the spatial 

extent of TTE forest patches.  The scale of these patches are more appropriate than coarse, global-scale estimates of forest 

structure for reporting site-specific forest structure estimates that are critical for understanding forest characteristics at this 

biome boundary in flux.  10 

4.3 Improving the estimates of forest patch height 

Estimates of forest patch height need to be improved to distinguish important patch characteristics. A potentially large 

source of uncertainty of patch height estimates may be attributed to the limitation of the approach of using direct height 

estimates for calibration of the indirect patch height prediction method.  This approach for direct sampling of patch height, 

from differencing canopy and ground surface elevations within LiDAR footprints, involves sampling a very small portion of 15 

the overall patch.  The assumption associated with delineating forest patches is that each patch itself is a homogenous unit with 

similar tree structure characteristics throughout.  However, the extent to which this assumption holds was not examined.  For 

patches with a high degree of tree structure heterogeneity, a single direct sample of height may not be sufficient to represent 

either maximum or mean patch heights.  These data, when used to train a Random Forest model, will degrade the modeled 

relationship of mean patch level image characteristics to patch height, because the sample used to determine patch height might 20 

not be representative of actual patch height.   

There are two ways to address this source of uncertainty.  The first is to accumulate more direct samples of forest 

heights within a patch.  This can be accomplished by collecting more ground surface elevation estimates within forest patches.  

One way of doing this is with more LiDAR samples.  The LiDAR data collected after the launch of ICESat-2 should add to 

the existing set of GLAS samples, contributing significantly to increasing ground surface elevation estimates is forested areas, 25 

and adding enormous value to approaches that involve data integration from a variety of sensors.  More ground surface 

elevation estimates can also be made by improving the way in which they are derived from HRSI DSMs.  These improvements 

are needed because of higher errors associated with HRSI DSM ground surface elevation estimates within forested areas 

(Montesano et al., 2014b).  Second, the homogeneity of forest patches can be improved by refining algorithms associated with 

delineating forest patches.  This could include decreasing patch size, improving the canopy surface roughness algorithm (e.g., 30 

with tree-shadow fraction estimates), and including multi-temporal HRSI to help separate surface features whose reflectance 

characteristics differ throughout the growing season.  These refinements may improve the modeling of forest patch height and 

ultimately the ability to discern diffuse TTE forms.   
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4.4 Spaceborne depiction of TTE form 

The conceptual model of ecotone forms presented by Harsch and Bader (2011) describes form as a result of the relative 

dominance of different controlling mechanisms (Harsch and Bader, 2011).  Only some of these mechanisms are primarily 

driven by climate.  For the diffuse TTE form, the primary controlling mechanism of this conceptual pattern is the growth-

limitation of trees, whereby tree-growth is driven by warming of summer or winter temperatures.  This study featured two key 5 

approaches for depicting diffuse TTE forms that may improve insight into the vulnerability to climate warming of current TTE 

structure. 

One key approach of this study involved integrating spatially detailed spaceborne observations.  This integration 

provided a means to simultaneously account for the horizontal and vertical components of the spatial patterns of forest structure 

in the TTE that may help improve depictions of the diffuse TTE form.  Recent literature on the patterns of trees in the TTE 10 

explain how tree density and height create varying forest patterns across the ecotone, that these patterns are important because 

they may provide clues as to the dynamics of TTE forest structure, and that they should be explored with detailed remote 

sensing (Bader et al., 2007; Harsch and Bader, 2011; Holtmeier and Broll, 2007).   

A second key approach aggregates the spaceborne estimates of horizontal and vertical structure at the scale of forest 

patches.  These patches provide a means to analyze the spatial pattern of forest structure.  This scaling is critical, because it 15 

facilitates a standardized approach to TTE structure mapping that is appropriate for the broad spatial domain of the TTE while 

adhering to requirements of site-specific forest structure detail.  This helps to explore the biogeography of TTE forest structure 

in the context of a conceptual model that highlights the importance of both TTE tree density and height.   

In this study, tree density is accounted for in an indirect manner with the delineation of forest patches that use the 

horizontal structure captured with HRSI.  This horizontal structure manifests itself as image texture or the frequency of 20 

vegetation across a spatial extent, and may be related to surface roughness, canopy cover or stem density, but a close 

examination of this relationship was not part of this study.  The patch-based approach for aggregating height information was 

a means to break apart the forested portions of each site by reducing the heterogeneity in horizontal structure.  Essentially, the 

use of the roughness information derived from HRSI helped establish a basis for the analysis of height by using it as a proxy 

for vegetation density, and by expressing it as a contiguous patch that served as the fundamental unit by which height was 25 

aggregated.  This data integration should provide more information for discerning diffuse TTE forms than individual 

assessments of either tree height or tree density.   

The site-scale, patch-based treatment of the landscape is driven by two central needs.  The first is the need for site-level 

understanding of TTE vegetation structure characteristics. The second is the need to understand the spatial patterns of trees 

across the landscape, because of the link between vegetation patterns and ecological processes.  This analytical approach 30 

should be developed to more deeply explore the TTE vegetation patterns that variations in height and density reveal, such as 

patch size, shape, landscape position, connectivity and spatial autocorrelation of varying types of forest patches across the TTE 

as well as the association of such patterns with permafrost and carbon flux dynamics.   
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4.5 Implications for understanding TTE structure vulnerability 

Understanding the vulnerability of TTE structure is a key objective of research into expected changes in the high 

northern latitudes (Callaghan et al., 2002a).  Multiple lines of evidence indicate that vegetation changes are occurring in the 

TTE, and that these changes are heterogeneous across the circumpolar domain.  The most rapid TTE vegetation responses to 

climate change will occur where climate is the main factor controlling TTE vegetation (Epstein et al., 2004).  This suggests 5 

that TTE structure is most vulnerable at sites both controlled by, and undergoing changes in, climate.  Currently, the reported 

patch-level forest height uncertainty constrains the identification of the portions of the TTE that are most vulnerable to forest 

structure change.  However, this spaceborne approach framed by the conceptual model of TTE form provides a clear directive 

for near-term work of examining the biogeography of forest structure in the TTE, and understanding and forecasting vegetation 

responses in the TTE based on the susceptibility to structural changes (i.e. vulnerability) that these general patterns of forest 10 

structure suggest. 

It is unlikely to derive the dominant mechanisms controlling TTE forest structure directly from remote sensing.  However, 

these mechanisms may be inferred from remotely sensed TTE form.  Depictions of diffuse TTE forms, resolved with improved 

maps of TTE patterns that incorporate forest patch height estimates, may provide evidence as to the general mechanisms that 

give rise to these diffuse forms (e.g. temperature-limited growth).  Mapped TTE patterns, i.e. TTE form, would be useful for 15 

examining ecosystem dynamics in the high northern latitudes.  These maps could be integrated with topographic, hydrologic, 

permafrost and other climate data to suggest a gradient of TTE structure vulnerability.  They would (1) provide information 

on the patterns of environmental variables that are the dominant drivers of tree growth, (2) provide insight into the influence 

of TTE structural changes on biodiversity (Hofgaard et al., 2012), and (3) inform plant community and forest gap models that 

combine temperature, soil and disturbance data to examine the drivers of vegetation structure and forecast its potential for 20 

change in the TTE (Epstein et al., 2000; Xiaodong and Shugart, 2005).  For example, understanding TTE form in areas where 

vegetation structural changes have been noted may help explain the variability of structure change.  Furthermore, these 

depictions could also contribute to spatially explicit site index information in ecosystem process models to help account for 

the variability in predictions of TTE forest structure dynamics across the circumpolar domain.  This will aid long-term 

forecasting by suggesting the most likely sites, at fine scales, for changes to vegetation-disturbance feedbacks and the extent 25 

to which biogeophysical interactions may shift (e.g., vegetation effects on surface albedo).  The vulnerability of TTE structure 

to temperature-induced change is one of many factors that may alter ecological processes in the high northern latitudes. 

5 Conclusions 

The vertical component of TTE form, maximum and mean forest patch height, as derived from a specific suite of 

spaceborne sensors at sites in northern Siberia, has an uncertainty of ~40%.  With this uncertainty, forest patches with 30 

maximum heights of 5 m and 10 m are statistically indistinguishable on the basis of height.  Height is a key attribute of the 

diffuse TTE forms, which generally feature a gradual decrease of height and tree density across the ecotone and are the most 
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likely form to demonstrate treeline advance.  Differences in the heights of forest patches are a central feature of the diffuse 

TTE form where significant structural changes have been observed.  These differences suggests that improving the remote 

sensing of patch height will provide a key variable needed for examining TTE forest structure.  The conceptual model of TTE 

form should continue to guide the application of a patch-based, multi-sensor spaceborne data approach because of its potential 

for aggregating and scaling information provided by the structural patterns of groups of forest patches across the full TTE 5 

domain.  Such patterns may help infer which portions of the TTE are most vulnerable to temperature-induced structural 

changes.   
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Table 1: Summary of spaceborne datasets used to delineate or attribute forest patches. 10 

Dataset Date Attribute Value Spatial Resolution 

Landsat-7: 

ETM cloud-free composite; 

Vegetation Continuous Fields 

c. 2013 Top-of-atmosphere reflectance (mean): 

SWIR, NIR, Red, Green; 

Percent Tree Cover (mean) 

30 m pixel 

HRSI: Worldview 1 & 2 c. 2012 DSM (mean, min, max, st. dev); 

NDVI (mean), 

Panchromatic roughness (mean); 

CRM (mean, st. dev) 

~ 0.5 m – 2 m pixel 

ALOS PALSAR composite 2007-2010 backscatter power (HH, HV) 25 m pixel 

ICESat-GLAS LiDAR 2003-2006 ground surface elevation, waveform length ~60 m diameter footprint 
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Figure 1: The study area in northern Siberia showing the 9 forest patch mapping sites (boxes) and the ground reference sites along 
the Kotuykan River (circles) at which individual tree height measurements in circular plots coincident with spaceborne LiDAR 
footprints were collected.  

 5 
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Figure 2. A representative example of forest patches showing a diffuse forest structure gradient of Larix gmelinii across an upland 
site delineated from HRSI. The top image shows a subset of a Worldview-1 panchromatic image from 8/21/2012 in one of the forest 
patch mapping sites. The bottom image shows the same subset with forest patches overlaid (green).  

 
(a) 5 

 

 
(b) 

Figure 3: (a) The distributions of forest patch size in hectares according to height attribution method. (b) The distribution of direct 
height sample density (shown as violin plots) for each forest patch size group, overlain with dots representing individual patches 10 
(red). 
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(a)     (b) 

 

 
(c) 5 

Figure 4: (a) Map of locations of calibration (green) and validation (grey) sites in northern Siberia with the number of stands or 
plots associated with each site. The circles representing general site locations are sized according to the number of stands. (b) 
Histogram of mean plot and stand heights from calibration and validation data. (c) Comparison of the distribution of mean height 
of calibration and validation plots and stands with that of forest patches heights from direct estimates.  Notched boxplots showing 
the 25th, 50th, and 75th percentiles of mean height as horizontal lines and 1.5 times the inter-quartile range as vertical lines. Notches 10 
roughly indicate the 95% confidence interval for the median. 
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Figure 5: Results from Random Forest indirect forest patch height estimation for 5 spaceborne data predictor sets. 

 

 
(a) 

 
(b) 

Figure 6: The bootstrap-derived distributions (shown as violin plots, blue) of the Random Forest model’s (a) R2 and (b) RMSE for 
the indirect forest patch height prediction method whereby all spaceborne variables were used to predict maximum and mean forest 5 
patch height. Boxplots (white) show the 25th and 75th percentiles (lower and upper lines), median (dark line), and 1.5 * the inter-
quartile range (whiskers). Data beyond the whiskers are shown as points. 
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(b) 

Figure 7: (a) Patch height and 95% prediction intervals (grey lines) for patches from direct prediction and indirect prediction shown 
across the continuum of patch sizes. (b) Distributions of relative prediction error (95% prediction interval) for patch height 
predictions. 
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